SMOG FILTER/Ex

GENERAL FILTRATION OF DUST AND GAS

APPLICATION

- cleaning the air from vapour, gas dust, in chemical-, analitic-, biological laboratories, during the grinding of various materials
- control of unpleasant smells appearing e.g. during gluing or usage of various types of aerosoles
- usage in zones of Ex hazard

FEATURES

The appliance consists of:

- steel housing,
- Ex fan located in the bottom part of the system, at the side of clean air,
- pre-filter Paint-Stop,
- high-efficiency HEPA filter class H13,
- cassettes with granulated activated carbon,
- terminal box,
- motor starter installed in the room, beyond the zone of Ex hazard,
- inlet cover (on demand).

ADVANTAGES

- high filtration efficiency
- safe contamination control of the air, in the zones of the Ex hazard
- full recirculation of the extracted air
- activated carbon wide range of absorbtion of numerous chemical compounds

TECHNICAL DATA

Туре	Part No.	Maximum volume flow [m³/h]	Marking	Maximum vacuum [Pa]	Motor rate [kW]	Supply voltage [V/Hz]	Acoustic pressure level [dB(A)]*	Weight [kg]
SMOG FILTER-1200/Ex	801O35	1200	II 2 G c Ex e II T3	1270	0,55	3x400/50	59	230

^{*} Acoustic pressure level was measured from distanxe of 1m.

SMOG Filter-1200/Ex

REPLACEABLE FILTERS

HIGH-EFFICIENCY HEPA FILTER

	Type	Part No.	Weight [kg]	Dimensions AxBxH [mm]	Class	Quantity of filters	Application	Filtration material
A	FW-SF-Ex	852F00	3,2	390x535x292	H13	2	SMOG Filter-1200/Ex	hydrophobic glass paper filtration efficiency: 99,95%

CASSETTE WITH ACTIVATED CARBON

	Туре	Part No.	Weight [kg]	Dimensions AxBxH [mm]	Quantity of cassettes	Application	Remarks
A	WA-ECO-20	838K98	24*	534x534x155	3	SMOG Filter-1200/Ex	the cassette case is of cardboard and plywood

^{*} Weight of the active carbon – 20 kg.

PRE-FILTER PAINT-STOP

B	Туре	Part No.	Weight [kg]	Dimensions AxBxH [mm]	Class	Quantity of filters	Application	Filtration material
A	PS-SF	852F02	0,5	800x535x50	G3	1	SMOG Filter-1200/Ex	non-woven of glass fibre with progressively increasing density

ADDITIONAL EQUIPMENT

INLET GUARD

D	Туре	Part No.	Weight [kg]	Diameter D [mm]
	K-SF	810H70	0,7	Ø450

ethyl bromide – C₂H₅Br

VALUES OF ACTIVATED CARBON ABSORPTION EFFICIENCY FOR VARIOUS TYPES OF VAPORS AND GASES

High efficiency

ethyl acrylate - C₅H₈O₂ methyl acrylate – $C_4H_6O_2$ acrylonitrile – C_3H_3N valericaldehyde - C₅H₁₀O amyl alcohol - C5H12O butyl alcohol - C₄H₁₀O propyl alcohol - C₃H₇OH aniline - C₆H₅NH₂ naphta (petroleum) naphta (coal tar) bromine - Br₂ butyl cellosolve - C6H14O2 cellosolve – $C_4H_{10}O_2$ cellosolve acetate - C₆H₁₂O₃ butyl chloride – C₄H₉Cl propyl chloride - C₃H₇Cl monochlorobenzene – C₆H₅Cl chlorobenzene - C₆H₅Cl ethylene chlorhydrin - C₂H₅ClO chloroform - CHCl₃ chloronitropropane – C₃H₆CINO₂ chloropicrin - CCl₃NO₂ chlorobutadiene – C₄H₅Cl cyclohexanol-C₆H₁₂O cyclohexanone - C₆H₁₀O tetrachloroethane - C2H2Cl4 tetrachloroethylene - C₂Cl₄ carbon tetrachloride - CCl₄ $decane - C_{10}H_{22}$ dioxane-C₄H₈O₂ dibromomethane - CH₂Br₂ ethylene dichloride – C₂H₄Cl₂ dichlorobenzene - C₆H₄Cl₂ dichloroethane – C₂H₄Cl₂ dichloroethylene-C₂H₂Cl₂ $dichloron itroethane-CH_3CCl_2NO_2\\$ dichloropropane-C₃H₆Cl₂ dimethylaniline-C₈H₁₁N amyl ether - C₁₀H₂₂O butyl ether - C₈H₁₈O dichloroethyl ether - C4H8Cl2O isopropyl ether-C₆H₁₄O propyl ether-C₆H₁₄O ethyl benzene - C₈H₁₀ phenol-C₆H₆O heptane - C7H16 heptylene - C7H14 indole-C₈H₇N isophorone-C₉H₁₄O iodine-I iodoform-CHI3 camphor-C₁₀H₁₆O diethyl ketone $-C_5H_{10}O$

dipropyl ketone - C₇H₁₄O

methyl butyl ketone - C₆H₁₂O

methyl ethyl ketone – C_4H_8O

methyl isobutyl ketone – C₆H₁₂O

creosole – $C_8H_{10}O_2$ cresol - C₇H₈O crotonaldehyde – C₄H₆O ethyl silicate – C₈H₂₀O₄Si acrylic acid - C₃H₄O₂ caprylic acid - C₈H₁₆O₂ butyric acid - C₄H₈O₂ lactic acid - C₃H₆O₃ uric acid - C₅H₄N₄O₃ acetic acid - CH₃COOH propionic acid - C₃H₆O₂ valeric acid - C₅H₁₀O₂ $menthol - C_{10}H_{20}O$ ethyl mercaptan – C_2H_6S propyl mercaptan - C₃H₈S methyl cellosolve – $C_3H_8O_2$ methyl cellosolve acetate - C₅H₁₀O₃ methylcyclohexane - C7H14 methylcyclohexanol - C7H14O urea - CH₄N₂O kerosene nicotyne – $C_{10}H_{14}N_2$ nitrobenzene - C₆H₅NO₂ nitroethane - C₂H₅NO₂ nitroglicerine - C₃H₅N₃O₉ nitropropane – $C_3H_7NO_2$ $nitrotoluene - C_7H_7NO_2 \\$ nonane - C₉H₂₀ amyl acetate – $C_7H_{14}O_2$ butyl acetate - C₆H₁₂O₂ ethyl acetate - C₄H₈O₂ isopropyl acetate - C₅H₁₀O₂ propyl acetate - C₅H₁₀O₂ octalene - C₁₂H₈Cl₆ octane - C₈H₁₈ putrescine - C₄H₁₂N₂ ozone – O_3 paradichlorobenzene - C₆H₄Cl₂ pentanone-C₅H₁₀O perchloroethylene – C_2Cl_4 pyridine – C_5H_5N $dimethylsulphate - C_2H_6O_4S$ skatole – C₀H₀N styrene monomer - C₈H₈ turpentine – $C_{10}H_{16}$ mesityl oxide – $C_6H_{10}O$ toluene-C₇H₈ toluidine - C₇H₉N trichloroethylene - C₂HCl₃

Average efficiency

acetone $-C_3H_6O$ acetylene $-C_2H_2$ acrolein $-C_3H_4O$ butyraldehyde $-C_4H_8O$ ethyl alcohol $-C_2H_5OH$ methyl alcohol $-CH_3OH$ benzene $-C_6H_6$

methyl bromide-CH₃Br butadiene-C₄H₆ chlorine - Cl₂ ethyl chloride - C₂H₅Cl $vinyl\ chloride - C_2H_3Cl$ cyclohexene-C₆H₁₀ dichlorodifluoromethan - CCl₂F₂ diethyl amine – C₄H₁₁N carbon disulphyde - CS₂ ether-C₄H₁₀O ethyl ether - C₄H₁₀O ethyl amine – C_2H_7N $fluorotrichloromethan-CCI_3F$ phosgene-COCI₂ anaesthetics hexane - C₆H₁₄ hexylene – C₆H₁₂ hexyne $-C_6H_{10}$ isoprene – C₅H₈ hydrogen iodide-HI xvlene - C₈H₁₀ formic acid – HCOOH methyl mercaptan - CH₃SH ethyl formate – $C_3H_6O_2$ methyl formate – $C_2H_4O_2$ $nitromethane - CH_3NO_2$ methyl acetate $-C_3H_6O_2$ pentane-C₅H₁₂ pentylene - C₅H₈ pentyne- C_5H_8 propionandehyde – C_3H_6O ethylene oxide - C₂H₄O carbon monoxide - CO

Low efficiency

acetaldehyde - C₂H₄O ammonia – NH₃ hydrogen bromide-HBr butane – C_4H_{10} butanone-C₄H₈O butylene – C_4H_8 butyne $-C_4H_6$ $methyl\ chloride-CH_3Cl$ hydrogen chloride – HCI hydrogen cyanide-HCN nitrogen dioxide - NO₂ sulphur dioxide - SO₂ hydrogen fluoride-HF formaldehyde-CH₂O propane - C₃H₈ propylene-C₃H₆ propyne-C₃H₄ hydrogen selenide – H₂Se hydrogen sulphide-H₂S sulphur trioxide – SO_3

WET-ALU/Ex

WET DUST SEPARATORS

APPLICATION

- extraction of explosive dust, especially dust emitted during aluminium grinding
- capturing of dry, humid and viscous dust

FEATURES

- mixing chamber contains a guiding plate, creating a whirlpool of a water-dust mixture
- hopper receiving the waste of filtration
- shear bottom closing, with a sludge container
- drainage valve
- fan located above the mixing chamber
- float indicators controlling the level and water replenishment in the mixing chamber
- deaerator in the top cover
- switchgear (installed beyond the Ex zone)
- revision covers of the dripping set
- the device is connected to the water supply ducting
- the device is equipped with a double-set of sludge discharge (for daily removal of sludge, is implemented a sludge container, supplied from the water installation, that washes out the accumulated waste, that is conveyed further to a container placed nearby the device, providing the efficient water saving)
- the accumulated sludge (in the collective hopper) uoght to be discharged systematically after the pneumatulic shear closing is closed, whereby the drainage valve must be opened
- after the sludge is discharged, the water in the mixing chamber is re-filled automatically

ADVANTAGES

- functiones in the Ex zone
- double-set of sludge discharge
- automatic water replenishment
- wide application in varipus fields of industry
- safe and efficient dust filtration, even dusts with significant amount of sparks and with hard to handle viscous dust particles

TECHNICAL DATA

Туре	Part No.	Maximum volume flow [m³/h]	Maximum vacuum [Pa]	Supply voltage [V]	Motor rate [kW]	Acoustic pressure level [dB(A)] from distance 1 m:	Capacity of the water chamber [m³]	Weight [kg]
WET-ALU-4000/Ex	800094	5000	4000	3x400	5,5	72	0,65	937
WET-ALU-6000/Ex	800095	9000	4500	3x400	11	76	0,65	1037

FUNCTION

WET-ALU-4000/Ex

WET-ALU-6000/Ex

