SMOG FILTER/Ex GENERAL FILTRATION OF DUST AND GAS ## **APPLICATION** - cleaning the air from vapour, gas dust, in chemical-, analitic-, biological laboratories, during the grinding of various materials - control of unpleasant smells appearing e.g. during gluing or usage of various types of aerosoles - usage in zones of Ex hazard #### **FEATURES** The appliance consists of: - steel housing, - Ex fan located in the bottom part of the system, at the side of clean air, - pre-filter Paint-Stop, - high-efficiency HEPA filter class H13, - cassettes with granulated activated carbon, - terminal box, - motor starter installed in the room, beyond the zone of Ex hazard, - inlet cover (on demand). #### **ADVANTAGES** - high filtration efficiency - safe contamination control of the air, in the zones of the Ex hazard - full recirculation of the extracted air - activated carbon wide range of absorbtion of numerous chemical compounds #### **TECHNICAL DATA** | Туре | Part No. | Maximum
volume flow
[m³/h] | Marking | Maximum
vacuum
[Pa] | Motor rate
[kW] | Supply voltage
[V/Hz] | Acoustic pressure level
[dB(A)]* | Weight
[kg] | |---------------------|----------|----------------------------------|---------------------|---------------------------|--------------------|--------------------------|-------------------------------------|----------------| | SMOG FILTER-1200/Ex | 801O35 | 1200 | II 2 G c Ex e II T3 | 1270 | 0,55 | 3x400/50 | 59 | 230 | ^{*} Acoustic pressure level was measured from distanxe of 1m. ## SMOG Filter-1200/Ex ## **REPLACEABLE FILTERS** #### **HIGH-EFFICIENCY HEPA FILTER** | | Type | Part No. | Weight
[kg] | Dimensions AxBxH
[mm] | Class | Quantity of filters | Application | Filtration material | |---|----------|----------|----------------|--------------------------|-------|---------------------|---------------------|--| | A | FW-SF-Ex | 852F00 | 3,2 | 390x535x292 | H13 | 2 | SMOG Filter-1200/Ex | hydrophobic glass paper
filtration efficiency: 99,95% | ## **CASSETTE WITH ACTIVATED CARBON** | | Туре | Part No. | Weight
[kg] | Dimensions AxBxH
[mm] | Quantity of cassettes | Application | Remarks | |---|-----------|----------|----------------|--------------------------|-----------------------|---------------------|---| | A | WA-ECO-20 | 838K98 | 24* | 534x534x155 | 3 | SMOG Filter-1200/Ex | the cassette case is
of cardboard and
plywood | ^{*} Weight of the active carbon – 20 kg. ## PRE-FILTER PAINT-STOP | B | Туре | Part No. | Weight
[kg] | Dimensions
AxBxH [mm] | Class | Quantity
of filters | Application | Filtration material | |---|-------|----------|----------------|--------------------------|-------|------------------------|---------------------|--| | A | PS-SF | 852F02 | 0,5 | 800x535x50 | G3 | 1 | SMOG Filter-1200/Ex | non-woven of glass fibre
with progressively increasing
density | ## **ADDITIONAL EQUIPMENT** ## **INLET GUARD** | D | Туре | Part No. | Weight
[kg] | Diameter D
[mm] | |---|------|----------|----------------|--------------------| | | K-SF | 810H70 | 0,7 | Ø450 | ethyl bromide – C₂H₅Br #### **VALUES OF ACTIVATED CARBON ABSORPTION EFFICIENCY FOR VARIOUS TYPES OF VAPORS AND GASES** #### **High efficiency** ethyl acrylate - C₅H₈O₂ methyl acrylate – $C_4H_6O_2$ acrylonitrile – C_3H_3N valericaldehyde - C₅H₁₀O amyl alcohol - C5H12O butyl alcohol - C₄H₁₀O propyl alcohol - C₃H₇OH aniline - C₆H₅NH₂ naphta (petroleum) naphta (coal tar) bromine - Br₂ butyl cellosolve - C6H14O2 cellosolve – $C_4H_{10}O_2$ cellosolve acetate - C₆H₁₂O₃ butyl chloride – C₄H₉Cl propyl chloride - C₃H₇Cl monochlorobenzene – C₆H₅Cl chlorobenzene - C₆H₅Cl ethylene chlorhydrin - C₂H₅ClO chloroform - CHCl₃ chloronitropropane – C₃H₆CINO₂ chloropicrin - CCl₃NO₂ chlorobutadiene – C₄H₅Cl cyclohexanol-C₆H₁₂O cyclohexanone - C₆H₁₀O tetrachloroethane - C2H2Cl4 tetrachloroethylene - C₂Cl₄ carbon tetrachloride - CCl₄ $decane - C_{10}H_{22}$ dioxane-C₄H₈O₂ dibromomethane - CH₂Br₂ ethylene dichloride – C₂H₄Cl₂ dichlorobenzene - C₆H₄Cl₂ dichloroethane – C₂H₄Cl₂ dichloroethylene-C₂H₂Cl₂ $dichloron itroethane-CH_3CCl_2NO_2\\$ dichloropropane-C₃H₆Cl₂ dimethylaniline-C₈H₁₁N amyl ether - C₁₀H₂₂O butyl ether - C₈H₁₈O dichloroethyl ether - C4H8Cl2O isopropyl ether-C₆H₁₄O propyl ether-C₆H₁₄O ethyl benzene - C₈H₁₀ phenol-C₆H₆O heptane - C7H16 heptylene - C7H14 indole-C₈H₇N isophorone-C₉H₁₄O iodine-I iodoform-CHI3 camphor-C₁₀H₁₆O diethyl ketone $-C_5H_{10}O$ dipropyl ketone - C₇H₁₄O methyl butyl ketone - C₆H₁₂O methyl ethyl ketone – C_4H_8O methyl isobutyl ketone – C₆H₁₂O creosole – $C_8H_{10}O_2$ cresol - C₇H₈O crotonaldehyde – C₄H₆O ethyl silicate – C₈H₂₀O₄Si acrylic acid - C₃H₄O₂ caprylic acid - C₈H₁₆O₂ butyric acid - C₄H₈O₂ lactic acid - C₃H₆O₃ uric acid - C₅H₄N₄O₃ acetic acid - CH₃COOH propionic acid - C₃H₆O₂ valeric acid - C₅H₁₀O₂ $menthol - C_{10}H_{20}O$ ethyl mercaptan – C_2H_6S propyl mercaptan - C₃H₈S methyl cellosolve – $C_3H_8O_2$ methyl cellosolve acetate - C₅H₁₀O₃ methylcyclohexane - C7H14 methylcyclohexanol - C7H14O urea - CH₄N₂O kerosene nicotyne – $C_{10}H_{14}N_2$ nitrobenzene - C₆H₅NO₂ nitroethane - C₂H₅NO₂ nitroglicerine - C₃H₅N₃O₉ nitropropane – $C_3H_7NO_2$ $nitrotoluene - C_7H_7NO_2 \\$ nonane - C₉H₂₀ amyl acetate – $C_7H_{14}O_2$ butyl acetate - C₆H₁₂O₂ ethyl acetate - C₄H₈O₂ isopropyl acetate - C₅H₁₀O₂ propyl acetate - C₅H₁₀O₂ octalene - C₁₂H₈Cl₆ octane - C₈H₁₈ putrescine - C₄H₁₂N₂ ozone – O_3 paradichlorobenzene - C₆H₄Cl₂ pentanone-C₅H₁₀O perchloroethylene – C_2Cl_4 pyridine – C_5H_5N $dimethylsulphate - C_2H_6O_4S$ skatole – C₀H₀N styrene monomer - C₈H₈ turpentine – $C_{10}H_{16}$ mesityl oxide – $C_6H_{10}O$ toluene-C₇H₈ toluidine - C₇H₉N trichloroethylene - C₂HCl₃ #### **Average efficiency** acetone $-C_3H_6O$ acetylene $-C_2H_2$ acrolein $-C_3H_4O$ butyraldehyde $-C_4H_8O$ ethyl alcohol $-C_2H_5OH$ methyl alcohol $-CH_3OH$ benzene $-C_6H_6$ methyl bromide-CH₃Br butadiene-C₄H₆ chlorine - Cl₂ ethyl chloride - C₂H₅Cl $vinyl\ chloride - C_2H_3Cl$ cyclohexene-C₆H₁₀ dichlorodifluoromethan - CCl₂F₂ diethyl amine – C₄H₁₁N carbon disulphyde - CS₂ ether-C₄H₁₀O ethyl ether - C₄H₁₀O ethyl amine – C_2H_7N $fluorotrichloromethan-CCI_3F$ phosgene-COCI₂ anaesthetics hexane - C₆H₁₄ hexylene – C₆H₁₂ hexyne $-C_6H_{10}$ isoprene – C₅H₈ hydrogen iodide-HI xvlene - C₈H₁₀ formic acid – HCOOH methyl mercaptan - CH₃SH ethyl formate – $C_3H_6O_2$ methyl formate – $C_2H_4O_2$ $nitromethane - CH_3NO_2$ methyl acetate $-C_3H_6O_2$ pentane-C₅H₁₂ pentylene - C₅H₈ pentyne- C_5H_8 propionandehyde – C_3H_6O ethylene oxide - C₂H₄O carbon monoxide - CO #### Low efficiency acetaldehyde - C₂H₄O ammonia – NH₃ hydrogen bromide-HBr butane – C_4H_{10} butanone-C₄H₈O butylene – C_4H_8 butyne $-C_4H_6$ $methyl\ chloride-CH_3Cl$ hydrogen chloride – HCI hydrogen cyanide-HCN nitrogen dioxide - NO₂ sulphur dioxide - SO₂ hydrogen fluoride-HF formaldehyde-CH₂O propane - C₃H₈ propylene-C₃H₆ propyne-C₃H₄ hydrogen selenide – H₂Se hydrogen sulphide-H₂S sulphur trioxide – SO_3 ## WET-ALU/Ex WET DUST SEPARATORS #### **APPLICATION** - extraction of explosive dust, especially dust emitted during aluminium grinding - capturing of dry, humid and viscous dust #### **FEATURES** - mixing chamber contains a guiding plate, creating a whirlpool of a water-dust mixture - hopper receiving the waste of filtration - shear bottom closing, with a sludge container - drainage valve - fan located above the mixing chamber - float indicators controlling the level and water replenishment in the mixing chamber - deaerator in the top cover - switchgear (installed beyond the Ex zone) - revision covers of the dripping set - the device is connected to the water supply ducting - the device is equipped with a double-set of sludge discharge (for daily removal of sludge, is implemented a sludge container, supplied from the water installation, that washes out the accumulated waste, that is conveyed further to a container placed nearby the device, providing the efficient water saving) - the accumulated sludge (in the collective hopper) uoght to be discharged systematically after the pneumatulic shear closing is closed, whereby the drainage valve must be opened - after the sludge is discharged, the water in the mixing chamber is re-filled automatically #### **ADVANTAGES** - functiones in the Ex zone - double-set of sludge discharge - automatic water replenishment - wide application in varipus fields of industry - safe and efficient dust filtration, even dusts with significant amount of sparks and with hard to handle viscous dust particles #### **TECHNICAL DATA** | Туре | Part No. | Maximum volume
flow
[m³/h] | Maximum
vacuum
[Pa] | Supply
voltage
[V] | Motor
rate
[kW] | Acoustic pressure level [dB(A)] from distance 1 m: | Capacity of the water
chamber
[m³] | Weight
[kg] | |-----------------|----------|----------------------------------|---------------------------|--------------------------|-----------------------|--|--|----------------| | WET-ALU-4000/Ex | 800094 | 5000 | 4000 | 3x400 | 5,5 | 72 | 0,65 | 937 | | WET-ALU-6000/Ex | 800095 | 9000 | 4500 | 3x400 | 11 | 76 | 0,65 | 1037 | ## **FUNCTION** ## WET-ALU-4000/Ex #### WET-ALU-6000/Ex